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The number of variables in many-particle systems is typically unmanageably large; some way to reduce
that number and still retain access to the important information about the system of interest is one of the
great challenges in the broad topic of complexity. Principal components and principal coordinates provide
a powerful means to extract—from unwieldy, large data sets—a reduced collection of variables that
provide the information one needs, in a relatively efficient way and useful form. We investigate the
application of principal components to the analysis of kinetics of the atomic motions in atomic clusters,
particularly of clusters that are large enough so that a full description in terms of the entire high-
dimensional potential surface is entirely impractical. A specific application is the use of principal
components linking minima with their adjacent saddles, permitting the evaluation of rate coefficients (in
the context of transition state theory) as ratios of partition functions of only one or two key variables.

1 Introduction

1.1 PCO and PCA

The analysis of the potential energy surfaces (PES) of clusters has proven to be a useful tool in theoretical
chemical physics,1–4 especially for relating the interparticle forces to the dynamical and kinetic behavior
of moderately complex systems. With current computational power and efficient algorithms, one can find
all of the minima and the important saddles on a potential energy surface for systems composed of up to
about 18 particles. However, the number of geometrically distinct minima grows at least exponentially
with the number of particles in the system, and the number of saddles grows even faster than that.5 And
this does not yet take account of the number of permutational isomers. Consequently, cataloging all the
minima and important saddles is, at very least, undesirable for 20 particles and more. Even if one were to
do such an exhaustive search, most of the topographical information would be of negligible use for the
analysis of dynamics.3 It is thus more desirable—and, in effect, necessary—to reduce drastically the
number of variables one uses to describe the system. It is clearly desirable to construct a sample PES
from a statistical sampling of the full PES, but to do this in a way that yields a reasonably accurate
representation of the dynamics or kinetics.6 Such a statistical sample PES would, one hopes, be adequate,
especially to reveal the most important, and, presumably, slow relaxation processes and their rates. In this
paper, we explore one approach that may offer a means to achieve such a reduction, namely the use of
principal component analysis (PCA) and its complement, principal coordinate analysis (PCO);
specifically, we examine the use of these tools to evaluate the rate coefficients on a many-dimensional
potential surface. We use these to avoid having to use the full set of coordinates to find the partition
functions and rate coefficients for passages between local potential minima on complex surfaces. In the
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end, we are able to estimate the minimum size of systems for which this approach would be a significant
aid.

This investigation is an exploration of the possibility and potential difficulties in using PCA and PCO
to reduce, in one particular way, the unmanageable complexity of the full master equation of a many-
body system. Here, we do not address the sampling problem—the choice of criteria for constructing a
suitable statistical sample of the full energy landscape. Nor do we address the related problem of
identifying pathological  landscapes, such as those of Ar38, Ar75 or perhaps prions—landscapes with
deep, narrow minima that have energies significantly lower than the readily accessible minima in large
basins, and that typically have structures different from those in the large basins, the landscapes
sometimes called Stillinger nightmares , after that researcher s conjecture of the existence of such
phenomena.

The methods of sampling pathways on complex potential surfaces have been studied extensively
elsewhere.6–8 Our focus here is primarily on making more efficient the evaluation of the many rate
coefficients for well-to-well passages. In our study, we chose as our main vehicle an Ar13 cluster,
approximated by pairwise Lennard-Jones potentials. We also examined Ar20 for some investigations, to
get some sense of the difficulties of working with larger systems. For the 13-atom cluster, a size
manageable for a relatively detailed study, we began with the database of 1505 geometrically distinct
minima and 25 653 important saddles.4,9,10 We selected 100 minima and the 1111 saddles connecting
them as our sample PES. This was done by starting at the global minima and following the connectivity
through saddles and branching out until we had reached our required 100 minima. We were careful to
include the most connected minima and branch out from them to other well connected minima so that we
obtained a good representation of the connectivity, in order to model the dynamics. In addition, we took
care to include all transition states directly linking any two minima. The pathways were consistent with
the rough trajectory  criterion found previously to be the most successful guide for finding reasonably
good estimates of the slowest rates of motion on the landscape.6

Once the sample PES has been obtained, then the rate constants for well-to-well passage of the argon
cluster can be calculated from the topography of the sample PES. We then went on to calculate the master
equation and other important features of the sample PES. Since principal component analysis (PCA) and
principal coordinate analysis (PCO) offer ways to reduce the dimensionality of the problem in calculating
rate constants and in visualizing the PES, respectively, PCA and PCO can, in principle, be used to
calculate rate constants efficiently and portray the significant features of the PES for large clusters.
Specifically, degrees of freedom that do not change significantly from the initial minimum to the saddle
can be neglected in evaluating the rate constant for that transition, within the formalism of transition state
theory, because the partition functions for such degrees of freedom are the same at both places on the
potential surface.

Principal coordinate analysis was first developed by Gower in 1966.11 Gower also showed the duality
of principal coordinate analysis and principal component analysis. PCO is a variant or dual of PCA and
both are means to select the most important out of the whole set of degrees of freedom.11,12

In our work, both PCO and PCA were used. Although there is a duality between the two methods, the
two are suited for different tasks. For example, PCO is principally suited for visualizing purposes and
does not provide analytic results.12 On the other hand, PCA is not well suited for reducing the
dimensionality of a PES representation but does provide analytic results for the reduced dimensions,12

such as those needed for calculating rate constants. Here, we make quantitative use of PCA, and apply
PCO primarily for building an intuitive picture of what the approximating approach is doing.

In this project, first, PCO is used to reduce the dimensionality of the PES of Ar20 in order to represent
its essentials visually in three-dimensional space. Then, PCA is applied to the Ar13 cluster in order to
reduce the vibrational analysis to a set of reduced dimensionality, in order to obtain rate constants for
transitions between minima (using their connecting saddles) in the context of transition state theory. That
way, when we obtain the rate constants, it becomes simple to construct and solve the master equation.

The crux of this approach is the way the rate coefficient for passage over a barrier is represented as the
ratio of the partition functions of the transition state and the initial state. These partition functions are
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products of the partition functions of the vibrational degrees of freedom. Any degree of freedom that is
essentially the same in the initial and transition state contributes the same partition function to the
numerator and denominator of the ratio, and hence, since these cancel, contributes only a factor of unity
to the rate coefficient. Only those degrees of freedom that differ significantly in passage from initial to
transition state contribute to the rate coefficient. These are precisely the degrees of freedom that PCO and
PCA identify.

1.2 Master equation

The stochastic master equation13 dynamics method has previously been applied to the study of the
kinetics on a PES13–16 Two general methods have been widely used to study near-equilibrium dynamics
and thermodynamics, such as relaxations of argon clusters: stochastic master equations and molecular
dynamics simulations (MD). The stochastic master equation does not reveal the atomic-level detail of
MD, but that method has several advantages over MD. First, solving the master equation is much faster
than solving the MD equations for the time intervals and time resolutions needed to reach equilibrium
and achieve results comparable to master equation solutions. The time-consuming part of solving the
master equation is constructing the transfer matrix (which contains the rate constants between minima)
and diagonalizing the resulting N × N matrix (where N is the number of minima in the sample PES). This
process yields the eigenvalues and eigenvectors that solve the equations.14,16,17 The complexity of
diagonalizing such a matrix is O(N3).

Second, by the method of master equation, we obtain average behavior of an ensemble, whereas MD
simulations require many runs to obtain satisfactory averages.4,18,19,20

Third, aside from the limitations of diagonalizing possibly a large matrix (though in this study, the size
is limited by choosing a sample PES that is as small as possible in order to describe the dynamics of the
cluster and still retain the desired accuracy), the master equation method does not suffer the limitations of
MD, such as large storage requirements, limited total simulation time, and establishing a time scale on
which ergodicity is achieved in a simulation.

Fourth, the transfer matrix is a product of the theory, in this case Rice-Ramsperger-Kassel-Marcus
(RRKM) transition state theory, used to describe the state-to-state kinetics,21,22 and also it retains the
characteristics of topography of the underlying PES, such as connectivity and energies of the stationary
points. This allows us to study the effect of different underlying approaches to setting up and solving the
master equation.23

Fifth, the master equation avoids the round-off error propagated in integrating the equations of motion
by the MD algorithms. Finally, to obtain kinetic results for different temperatures, new ensembles of MD
trajectories must be calculated, whereas for the master equation, the transition matrix can just be modified
in a fast and simple manner to account for the temperature dependences of the rate coefficients.

Hence, this is an exploration into a possible way to make manageable the description of the motions of
moderately complex systems by constructing and solving master equations based on suitably chosen
samples of their energy landscapes, as an alternative to using more detailed methods such as molecular
dynamics. It is not in any way a study of how to construct the statistical sample, only of examining a way
that may be useful for evaluating the rate coefficients on that sample landscape.

For the Ar13 system, the transition matrix was calculated for a temperature equivalent in Lennard-
Jones units to a conventional temperature of 30 K in this work. This temperature was an arbitrary choice
that falls in the range of solid–liquid coexistence for this system. Other temperatures would certainly
involve different rates and different equilibrium population distributions. A primary motivation for this
effort is to try to find a way to speed up and simplify the calculation of the rate constants that comprise
the transition matrix of the master equation. The rate coefficients that are the elements of that matrix are,
within the context of transition state theory, ratios of partition functions, at saddles and at the initial states
leading to those saddles. The goal of this effort was to see whether reducing the number of variables
needed to compute the partition coefficients to just those that carry significant changes, i.e. the most
important PCAs and PCOs, would simplify the construction of the master equation to a useful extent.
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2 Theory

2.1 Calculating PCO and PCA

PCA is the first step in PCO, as both are duals of each other. PCA uses a correlation matrix formed from
comparison between variables that set apart one data point from the others. Here, the coordinates are used
as variables and different configurations as individual data points.

We start with an n × p matrix, Y, with n observables and p variables for each observable; here, the two
methods diverge. For PCA, we start with the p × p matrix YTY, measuring the variance between variables.
In contrast, PCO uses the n × n matrix YYT, measuring the similarity between configurations. Both PCA
and PCO together are the tools of a general method, far more than just our specialized application and
exhibit great variety, not only in the fields in which they are applied, but also in how they are
mathematically adapted to the need. For example, the distance matrix in PCO can be defined in many
ways to obtain what one considers the correct measure of distance (or dissimilarity) for the application.
Likewise, PCA s covariance matrix can be replaced with similar matrices, such as correlation or sums-of-
squares-cross-products (SSCP),24 depending on the application.

The first step in our use of PCO is setting up the distance matrix between configurations. The matrix is

defined by , where i and j are the configuration indices, r is the coordinate index, X are
Cartesian coordinates, and dij is the measure of dissimilarity between the ith and jth configurations. This
describes the distance  between configurations and is thus suitable for constructing the PES graph.

The second step is constructing a centralized distance matrix as follows:
1. Form the A matrix, −dij/2, of interparticle distances.
2. Centralize the A matrix and, from it, form the B matrix, bij = aij − ai . − aj . + a.., where ai . is the

average over the ith row, aj . is the average over the jth column, and a.. is the average over the whole
matrix A. We do this to remove averages from the calculations and results.

3. Diagonalize the B matrix and obtain the eigenvalues and eigenvectors.
4. Normalize the eigenvectors to eigenvalues. That is, normalize the eigenvectors so that their norms

are the corresponding eigenvalues. This is done by dividing the eigenvectors by the square root of the
corresponding eigenvalue.

5. The normalized eigenvalues give the percent of the total variance between the structures contained
in the corresponding eigenvector.

We then proceed to pick the first few eigenvectors (or PCOs) with the largest eigenvalues which reveal
that they are the ones with the largest variances contained in them, in order to derive the new data set. To
construct a 3D graph, we pick the first two eigenvectors and plot the energy as a function of these
variables, to get a picture of the main features of the PES.

The procedure for PCA is similar to that of PCO:12,25

1. One first subtracts the mean from the data, similar to centralizing our data for the PCO. That is, we
subtract the average across each dimension from each datum in that dimension.

2. We calculate the covariance matrix (see ref. 25 and 26 as needed).
3. We then diagonalize the covariance matrix and obtain the eigenvectors and eigenvalues.
4. The eigenvectors give a linear combination of the data set. We have done this in two ways. In our

first case, we chose the interatomic distances as the variables and configurations as the data points. In our
second case, the 3N atomic coordinates are the variables and the configurations are the data points.

5. The normalized eigenvalues give the percentage variance contained in the corresponding
eigenvectors.

6. Last, we pick out the most important variables, corresponding to the eigenvectors with the highest
eigenvalues, using the linear combination as a weight.

In the central effort of this study, only one eigenvector was picked for the case based on interatomic
distances, and three eigenvectors were picked for the atomic coordinates case. The calculations were also
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done with more eigenvectors or PCAs, but this did not change the results, as the mathematics dictates
exactly how many PCA coordinates we need (i.e. the 1-dimensional nature of the interatomic case
requires one PCA while the 3-dimensional nature of the atomic coordinates requires three PCAs). This
shows that the first few PCAs effectively contain all of the important variance in our data. In the linear
combination, we proceeded to pick the most important interatomic distances by looking at their weights.

This reduction, in turn, told us what coordinates needed to be included in the computation of the
reduced Hessian from which we obtained the frequencies required to compute the rate constants of the
master equation. Finally, for the PCO and PCA methods, since we only needed the first few largest
eigenvalues/eigenvectors, we used Lanczos methods27 to cut down on computational cost. The
computational cost saved by Lanczos method is significant, especially for large systems for which neither
the computation time nor resources exist to deal with diagonalizing very large matrices. Our own tests
showed that for very large systems, the Lanczos method can be orders of magnitude faster than a full
diagonalization.

2.2 Constructing the master equation

The stochastic master equation formalism is an initial value problem whose solutions are time-dependent
occupation probabilities for the minima in our sample PES.13 The main component of the master equation
is its transition matrix. The eigenvalues and eigenvectors of the transition matrix solve the master
equation. The eigenvalues give the exponential rates of flow of the population distributions on the PES,
and the eigenvectors describe these flows in terms of changes in the populations among the minima
connected to the particular minimum. That is, the absolute value of the jth component of the ith
eigenvector will determine the magnitude of the rate by which the mode j will change the population at
state i and its sign will determine if the population will increase or decrease.

The first step in constructing the master equation for our system is obtaining the partition functions
used in calculating the rate constants of the RRKM transition state theory. Realistic partition functions,
including anharmonic corrections, have been studied in detail elsewhere.23 For our purposes, it suffices
for us to use a classical harmonic model to obtain the vibrational partition function:

where m is the number of vibrational degrees of freedom in each type of configuration, with m = 3N − 6

= 33 for minima and m = 3N − 7 = 32 for transition states,  for kB, the Boltzmann constant, and T
is the temperature (30 K in these calculations), and vj is the jth normal mode vibrational frequency. The
frequencies, vj, are obtained by diagonalizing the Hessian of a given stationary point. It is here that we
use PCA to dramatically reduce the dimension of the Hessian matrix and thus speed up obtaining the
frequencies. The rationale behind this is that the important quantities, in our case the rate constants and
equilibrium solutions to the master equation, use the ratio of vibrational partition functions of the
minimum and the saddle. This means that the partition function factors of similar normal modes
effectively cancel out, leaving us with only those normal modes that change between the saddle and the
minimum. We can then construct the partition function23

Zi = nsZvibexp(− Vi)

where Vi is the potential energy at the stationary point. The degeneracy factor, ns, accounts for the number
of distinct permutational isomers, and is given by
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where np is the total number of nuclear permutations, and hs is the order of the point group for that
configuration.28

Transition matrix and master equation. The transition probabilities, Wij, which make up the elements
of the transition matrix, W, for passage from well j to well i (i  j) is the sum of the RRKM transition
rates for each of the N ij transition states, l, connecting the wells:

where Vl = Vl − Vj is the barrier height of the transition (Vl and Vj are the potential energies of the
transition state l and minimum j, respectively). Zj and Zl are the partition functions for the local minimum
j and the transition state l, respectively. Note that the above equation for Wij is only used to obtain off-
diagonal terms in the transition matrix. So, in order to write the master equation in matrix form, we need
to define the diagonal terms. The diagonal terms are the combined rates for all transitions out of well i
into wells connected to it:

Now we construct the master equation for the time-dependent probability vector, P(t) [with N (the
number of minima in the sample PES) components with values Pi(t), the probability of the system
residing in well i at time t]; writing it in component form:

or writing it in matrix form:

P(t) = WP(t).

The transition matrix, and thus the master equation, do not contain degenerate contributions; that is,
transitions to the same well or permutational isomers do not affect the ensemble population of that
geometry, and therefore are not counted.

The equilibrium, i.e. infinite time, solutions to the master equation are quite simple and are given by
the Boltzmann distribution23 

Again, Zi is the partition function for the minimum i, and Vi is the potential energy at that minimum.

Solutions to the master equation. In our calculations, we used a Householder reduction to obtain a
QR  decomposition and thus diagonalize the transition matrix W.29,30 To use this, and to ensure a
spanning set of eigenvectors with real eigenvalues, we need to symmetrize the transition matrix. We can
obtain this by evoking the condition of detailed balance:
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We therefore form a new symmetric matrix, :

 and W have the same eigenvalues, i. Their eigenvectors,  and u(i), respectively, are related by 

. The final solution to the master equation in terms of the eigenvectors of  is:

or in terms of the eigenvectors of W:

In our work, we look at and compare the eigenvalue spectrum and ultimately the relaxation curves Pi(t),
which are the solutions to the master equation, to judge the validity of our method. However, also using
eigenvector similarities have been studied elsewhere by Lu et al.6

3 Results

First, we examine the way PCO can give insights into the topography of a complex energy landscape. For
this, we used the Ar20 cluster, one whose potential is far too complex to be envisioned in any relatively
full way. We chose 75 points on the PES of Ar20 using the program OPTIM2 by David Wales, with the
Lennard-Jones potential. Since we were interested in seeing how to apply PCO, and were not concerned
here with finding good methods to choose the PES points to which we would apply PCO, we simply
picked our 75 by starting from the global minimum and the second lowest minimum we could find and
branched out from them by constructing monotonic sequences, but in random directions. We also added a
few points just randomly from general non-monotonic sequences originating from the global minimum
point to complete the picture. We then performed PCO with Cartesian coordinates and picked the most
important two eigenvectors to obtain the graph of the PES (Fig. 1).
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Fig. 1 Principal coordinate representation of the PES of Ar20 based on the two most important
principal coordinates derived from the Cartesian coordinates of the particles.

We can see that the PES of Ar20 has two main funnels, at least in the portion we sampled. Thus, with
only two PCO eigenvectors, we were able to get a good picture of the complex PES of Ar20. Because
almost all the variance between these two stable forms is encapsulated in the two principal coordinates,
they are adequate for estimating the effective distance between them.

Then we turned to the more quantitative problem of finding whether PCA can be used to reduce the
dimensionality of the problem of finding rate coefficients. For Ar13, we applied PCA. First, we formed
the data with interatomic distances as the variables (N(N − 1)/2 of them) and stationary points as
configurations. We then performed PCA and picked the first eigenvector. Out of the first eigenvector, we
picked the highest weights corresponding to the most important interatomic distances. For all rate
constants, the first eigenvector effectively represented all the variance of the data. With those data, we
then proceeded to do harmonic vibrational analysis using the Hessian matrix on the minima and saddles.
Finally, we constructed and solved the master equation to get the eigenvalues. We repeated the
calculation a second time with the modification of using atomic coordinates as the variables (3N of them)
and stationary points as configurations and taking the three largest eigenvectors instead of one. We
compared the eigenvalue spectra obtained from a full Hessian and from our two-PCA reduced Hessian
(Fig. 2 and 3).
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Fig. 2 The eigenvalue spectra of the full master equation
compared with PCA using interatomic distances.

Fig. 3 The eigenvalue spectra of the full master equation
compared with PCA using atomic coordinates.

As we can see from the spectral graphs, the PCAs give results for the eigenvalue spectrum nearly
identical with those of the full treatment. However, the relaxation curves are an even better match than
the spectra, as discussed below. Also, the PCA, using two principal components for interatomic distances,
gave exactly the same spectrum as that from PCA with one component since, as stated above, the second
PCA adds nothing to the variance (that is, the first PCA component represented 100% of the motions
with the remaining components adding nothing, due to the fact that changes in the cluster are completely
captured by the change in the bonds, which are 1-dimensional and thus the largest covariance eigenvector
contains all the variance). A similar thing happened with more than three principal components based on
the atomic coordinates for the reasons states above. For this case of three principal components, the
variance divided between the three components varied from case to case, but the variance divided
somewhat equally on average among the three; each contained about 1/3 of the variance. This behavior of
the coordinate-based PCAs meant that in this representation, one must keep three components, since
eliminating any of them would mean losing roughly 1/3 of the variance. Adding more than three
components increased computations dramatically but added nothing. However, these three components
gave us the same PCA spectrum as that based on interatomic distances, but with a much improved speed
in computation compared to the interatomic method. Finally, it is very important to note that the similarity
between the full master equation and one based on PCA reduced coordinates is especially strong for the
highest (least negative) eigenvalues, which dominate the relaxation process. We see the numerical
comparison for eigenvalues listed from highest to lowest (log nearest zero and hence slowest process
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first), and thus with the important eigenvalues leading the list, in Table 1.

Table 1 Spectra of the log10(− ) of the eigenvalues, , and their comparison between full and PCA
molecule

Full Hessian PCA interatomic PCA coordinates

log10(− ) Occurrence log10(− ) Occurrence log10(− ) Occurrence

6.8 1 6.8 1 6.8 1
7.0 1 7.0 2 7.0 1
7.1 1 — — 7.1 1
7.2 1 7.2 1 7.2 1
7.3 1 7.3 1 7.3 1
7.5 1 7.5 1 7.5 1
7.7 2 7.7 2 7.7 1
7.8 1 7.8 1 7.8 2
8.0 1 8.0 1 8.0 1
8.5 2 8.5 2 8.5 2
8.7 1 8.7 1 8.7 1
8.8 1 8.8 1 8.8 1
8.9 4 8.9 3 8.9 3
9.0 1 9.0 2 9.0 3
9.1 5 9.1 5 9.1 4
9.2 3 9.2 2 9.2 3
9.3 4 9.3 5 9.3 4
9.4 2 9.4 2 9.4 2
9.5 4 9.5 4 9.4 4
9.6 6 9.6 6 9.6 6
9.7 4 9.7 4 9.7 4
9.8 4 9.8 4 9.8 4
9.9 5 9.9 5 9.9 5
10.0 4 10.0 4 10.0 4
10.1 4 10.1 4 10.1 5
10.2 3 10.2 3 10.2 2
10.3 1 10.3 1 10.3 1
10.4 3 10.4 3 10.4 4
10.5 3 10.5 3 10.5 2
10.6 2 10.6 2 10.6 2
10.7 4 10.7 3 10.7 3
10.8 4 10.8 5 10.8 5
10.9 3 10.9 3 10.9 2
— — — — 11.0 1
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11.1 2 11.1 2 11.1 1
11.2 2 11.2 3 11.2 4
11.3 3 11.3 2 11.3 2
11.4 3 11.4 3 11.4 4
11.5 1 11.5 1 11.5 1
11.6 1 11.6 1 — —

As one can see, there is a very close numerical relationship between the spectra, with almost identical
results that differ in eigenvalue numbers by at most 0.1 and in occurrence by at most 2, with the vast
majority not differing at all. Again, the relaxation curves are in an even better agreement with the full
Hessian method, as seen below.

The master equation solutions given as relaxation curves, Pi(t), give a better picture of how well the
PCA methods did. We set up the relaxation by picking out the top tier of highest energy levels in our
sample PES for Ar13 which were well separated from the rest. We then divided the starting population
equally among them and let them relax. This seemed to be an initial condition that would be least likely
to introduce a bias in the relaxation process, and, at this stage, a detailed exploration of the effects of the
initial conditions seemed to be a second-level  problem, something to address in later studies. In order
to understand the results better, it is important to note that the global minimum for Ar13 is not only in a
very deep well and its energy is significantly lower than even the next closest minimum, but it is also by
far the most connected (almost three times more connected than the next closest one). Connectedness
plays a very important role in the relaxation, as it dictates how much and how fast population is dumped
in and out of a minimum. So, for example, a higher energy minimum that is well connected will populate
fast initially but will quickly lose that population and go to zero fast. Also, a low energy minimum that is
well connected, with most channels dumping into it from higher energy minima than depopulating it to
lower energy minima, will build up population fast and then depopulate slower and have a higher
population left in it at infinite time. Obviously, since the global minimum is the most connected, it has a
much lower energy than anything else, and does not dump its population anywhere else, it will grow fast
and approach a population fraction of 1 rapidly. Since the PCA methods gave results almost identical to
each other and to the full Hessian method, we only graph either the Pi(t) that play an important role
and/or the PCA methods for them that deviate from the full Hessian or each other. All PCA curves are
solid lines and all curves go to zero except for the global minimum.

The most important relaxation curve is that of the global minima, where all the population quickly
ends up, for reasons stated above. Only the atomic coordinate method of PCA differed from the full
Hessian for the global minimum. As can be seen in Fig. 4, the atomic coordinate method differs very
slightly from the full treatment. The low energy and connectivity of the global minima allow it to
dominate even the next closest minimum, which is both at a much higher energy and less than 1/3 the
connectivity, as shown in Fig. 5. The lowest tier of energy (excluding the global minimum), which are
also the most connected, are shown in Fig. 6. They populate well initially and go to zero much slower
than the other minima, for reasons stated above. Again, only the atomic coordinate PCA differs from the
full Hessian method on two of the minima. The second tier of lowest energy levels are shown in Fig. 7.
These have much lower maximum population levels than those in Fig. 6 and go to zero much faster. For
comparison, we have the two minima that are the second most connected (i.e. lower than those in Fig. 6)
shown in Fig. 8 and Fig. 10 of the ESI.  The difference in the atomic coordinate PCA is shown in Fig. 8,
while the highest energy tier that start with equal populations are shown in Fig. 9. We have included more
graphs in the ESI.
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Fig. 4 Close-up view of the first part of the global
minimum relaxation curve. Atomic coordinates PCA.
Energies in .

Fig. 5 Relaxation curves of the global minimum and the
next lowest energy minimum. Energies in .
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Fig. 6 Relaxation curves of the lowest energy levels
(also the most connected), excluding the global
minimum. Atomic coordinates PCA. Energies in .

Fig. 7 Relaxation curves of the energy levels just above
the lowest ones. Energies in .

Fig. 8 Relaxation curves of second most connected
minima (second to the lowest energy tier). Atomic
coordinates PCA. Energies in .
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Fig. 9 Relaxation curves of the top energy tier, which
were all equally populated at t = 0. Energies in .

From the relaxation curves, we see that the two PCA methods give almost exact curves to the full
Hessian methods and to each other. The only difference of the PCA methods are shown above, which are
few in number and differ only slightly. The only real difference between the two PCA methods is fact that

the coordinate method is much faster (requiring 3N × 3N covariance matrices versus 
matrices), while the interatomic has a slight advantage in accuracy. The enormous speed advantage of the
atomic coordinate method, especially for medium sized and above systems, means that it is the preferred
method. The accurate eigenvalues and master equation solutions mean that PCAs give the same set of
important dynamics as the case where we did not use them. However, their usefulness is currently limited
since their speed advantage comes into play for systems much larger than those currently being studied
computationally, as discussed in the conclusion.

4 Conclusion

Both PCA and PCO offer a way to reduce the dimensionality of a data set. PCO was successfully used to
provide a 3D graph of the PES of Ar20. The graph showed that the PES of Ar20 is made up of two main
funnels. PCA was used to reduce the dimensionality of the vibrational partition function, for purposes of
computing rate coefficients for the master equation. The rate constants were then used to get the
eigenvalues of the master equation. The eigenvalue spectrum and master equation solutions obtained by
using PCA were almost identical to using the full Hessian. These proved that PCA is a valid way to
reduce the dimensionality of the Hessian and obtain effective partition functions for use in the transition
matrix of the master equation. The striking similarity of the eigenvalues from PCA and the full set of
coordinates gave clear evidence that passage between a minimum and a specific saddle above that
minimum can be expressed very effectively in terms of a single variable—but a different variable for
every minimum–saddle pair. Although PCO and PCA were both successful for their intended purposes,
PCA is nonetheless not recommended for use in calculating rate constants for many situations, as
explained below.

First, in constructing a PES for a cluster, all the Hessian eigenvalues, at least at the stationary points,
are typically calculated as part of the search methods. For example, the database provided by Mark Miller
et al.10 included the products of all the eigenvalues of the individual minima and saddles, this being
suitable for calculating the vibrational partition functions. Therefore, the only potential use for any
method that calculates Hessian eigenvalues from the PES database (including PCA) is a case in which
one does not have the eigenvalues used in constructing the PES, which is rare (if not an impossibility).

Second, calculations using the full Hessian methods require that we only diagonalize the Hessian once
for each stationary point. However, the PCA method means we have to compare each saddle–minimum
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pair to find the most significant changes and calculate the Hessian for the minimum and the saddle in that
pair based on the result of the comparison. Therefore, while for a minimum–saddle–minimum, the full
Hessian method diagonalizes three 3N × 3N matrices, the atomic coordinates PCA method first needs to
diagonalize two 3N × 3N covariance matrices and then diagonalize four reduced Hessian matrices of
about the size of N × N.

Even with the computational cost advantages when one uses the Lanczos method to cut down on the
computation of obtaining the three largest eigensystems of the two 3N × 3N covariance matrices and
diagonalizing the smaller N × N Hessians, the sheer number of extra calculations involved for the PCA
means it will only see advantages for very large PES databases. At those large PES database sizes, the
Lanczos method becomes many orders of magnitude cheaper than full diagonalization and the smaller
size of the PCA reduced Hessians outpace the fact that more of them need to be calculated. The point at
which those two computational savings of the PCA overtake the full Hessian method is very dependent on
the algorithm and computational platform. Processor speed and architecture, RAM availability, operating
system, and parallel computing make the most significant impact on the turn-over point. Therefore, our
results must be taken as very rough guides and the only way to get a more accurate estimate of what the
turning point would be for a computing system is to run speed tests on that system.

In calculating the crossover point for the PCA methods, we biased the calculation toward the PCA
method by using very conservative estimates and equations for things such as the number of saddles in
the database versus the number of minima and the advantage of using Lanczos method. Based on the
timings obtained on the computational resources available to us, our estimates give us a rough point of a
PES the size of that of the full PES of Ar200 to Ar250. Note that the important factors are the size of the
PES database, the relative ratio of the number of saddles to the number of minima, and the size of the
Hessian matrices, so if one uses a sampled PES, it needs to be at least the size of the full PES of the
above argon systems with the number of saddles not significantly larger than those in the argon systems.
Since we estimate the Ar200 to have at least 7×1047 minima and 4×1050 saddles connecting those minima,
and the largest current databases are not even in the millions, the PCA method will not be of any use for
a very long time.
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Footnotes

 Electronic supplementary information (ESI) available: Relaxation curves of second most connected minima; relaxation curves
of some middle energy tier minima which have better maximum population achieved than the rest of the middle tier; relaxation
curves of some middle energy tier minima which have better maximum population achieved than the rest of the middle tier;
relaxation curves of some middle energy tier minima; some of the relaxation curves of the energy tier below the highest energy
tier. See DOI: 10.1039/b913802a

 QR decomposition is the transformation of a matrix A into the product of an upper triangular matrix Q and an orthogonal matrix
R.
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0.5 Supplementary

The the difference in the interatomic distance PCA is shown in Figure 10. For
the middle energy tier, we list the ones that have the best maximum population
for the tier in Figure 11/Figure 12 and we list some sample other middle tier
minima in Figure 13/Figure 14. The difference in the atomic coordinate PCA
are shown in Figure 11 and Figure 13, while the interatomic distance PCA are
shown in Figure 12 and Figure 14. Finally, the highest energy tier that start with
equal population are shown in Figure 9 and the energy tier just below them are
shown in Figure 15. Note that the top high energy tier minima all relax exactly
the same, probably since they have very similar energies and connectivities.
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Figure 10: Relaxation curves of second most connected minima (second to the
lowest energy tier). Interatomic PCA. Energies in ε.
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Figure 11: Relaxation curves of some middle energy tier minima which have
better maximum population achieved than the rest of the middle tier. Atomic
Coordinates PCA. Energies in ε.
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Figure 12: Relaxation curves of some middle energy tier minima which have bet-
ter maximum population achieved than the rest of the middle tier. Interatomic
PCA. Energies in ε.
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Figure 13: Relaxation curves of some middle energy tier minima. Atomic Co-
ordinates PCA. Energies in ε.
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Figure 14: Relaxation curves of some middle energy tier minima. Interatomic
PCA. Energies in ε.
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Figure 15: Some of the relaxation curves of the energy tier below the highest
energy tier. Energies in ε.
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